«Рассмотрено»
Руководитель МО
Учителей естественно научного
цикла
______ О.Н. Галеева
Протокол № ____
от «29» августа 2025 г.

«Согласовано»
Заместитель директора по УР
_____ М.О. Зубарева
«19» августа 2025 г.

«Утверждено»
Директор ГБОУ «Казанская школа-интернат № 4 для детей с ОВЗ»

— Ф.Х. Шакурова.
Приказ № 78-ОД
от «29» августа 2025 г.

РАБОЧАЯ ПРОГРАММА

по учебному предмету «Математика» среднего общего образования (10(11)-11(12) класс), вариант 6.2 для обучающихся с нарушениями опорно-двигательного аппарата ГБОУ «Казанская школа-интернат № 4 для детей с ОВЗ»

Пояснительная записка

Рабочая программа по учебному предмету «Математика» базового уровня для обучающихся 10(11)—11(12) классов разработана на основе Федерального государственного образовательного стандарта среднего общего образования, с учётом современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования. Реализация программы обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития личности обучающихся.

В рабочей программе учтены идеи и положения «Концепции развития математического образования в Российской Федерации». В соответствии с названием концепции, математическое образование должно, в частности, предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе. Именно на решение этой задачи нацелена примерная рабочая программа базового уровня

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Предмет математика (алгебра и начала математического анализа, геометрия, вероятность и статистика) в 10-11 классах включает в себя изучение двух дисциплин «Алгебра и начала математического анализа» (3 часа в неделю) и «Геометрия» (2 часа в неделю), «Вероятность и статистика» (1 час в неделю) будет изучаться на базовом уровне. Всего количество часов по математике (алгебра и начала математического анализа, геометрия) при продолжительности учебного года в 10 классе 34 недели составляет 204 часа (алгебра и начала математического анализа — 102 часа, геометрия — 68 часов, вероятность и статистика — 34 ч), в 11 классе 33 недели составляет — 198 часов (алгебра и начала математического анализа — 99 ч, геометрия — 66 ч, вероятность и статистика — 33 ч).

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА АНАЛИЗА» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения учебных курсов информатики, обществознания, истории, словесности. В рамках учебного курса «Алгебра и начала математического анализа» обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме. Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их в повседневной жизни. В тоже время овладение абстрактными и логически строгими математическими конструкциями развивает умение находить закономерности, обосновывать истинность утверждения, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление. В ходе изучения алгебры и начал математического анализа на уровне среднего общего образования обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций и интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и в искусстве, с выдающимися математическими открытиями и их авторами. Учебный курс алгебры и начал математического анализа обладает значительным воспитательным потенциалом, который реализуется учебный материал, способствующий формированию научного через мировоззрения, так и через специфику учебной деятельности, требующей самостоятельности, аккуратности, продолжительной концентрации внимания и ответственности за полученный результат. В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения. В структуре программы по алгебре и началам анализа выделяются следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин: алгебра, тригонометрия, математический анализ, теория множеств и другие. По мере того как обучающиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные в учебном курсе «Алгебра и начала математического анализа», для решения самостоятельно сформулированной математической задачи, а затем интерпретировать полученный результат. Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию прочных вычислительных навыков, включающих в себя использование различных форм записи действительного числа, умение рационально выполнять действия с ними, делать прикидку, оценивать результат. Обучающиеся получают навыки приближённых вычислений, выполнения действий с числами, записанными в стандартной форме, использования математических констант, оценивания числовых выражений. Содержательная линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе программы предусмотрено решение соответствующих задач. Обучающиеся овладевают различными методами решения целых, рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и их систем. Полученные умения используются при исследовании функций с помощью производной, решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования целых, рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. изучению алгебраического материала происходит дальнейшее алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки. Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий. Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, у которых появляется возможность исследовать и строить графики функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, нахождения наилучшего решения в прикладных, в том числе социальноэкономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и их авторах. Содержательно-методическая линия «Множества и логика» в основном посвящена элементам теории множеств. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины в единое целое. Поэтому важно дать возможность обучающемуся понимать теоретико-множественный язык современной

математики и использовать его для выражения своих мыслей. В учебном курсе «Алгебра и начала математического анализа» присутствуют также основы математического моделирования, которые призваны сформировать навыки построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа и интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа». Общее число часов, рекомендованных для изучения учебного курса «Алгебра и начала математического анализа», – 201 час: в 10 классе – 102 часа (3 часа в неделю), в 11 классе – 99 ч (3 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС. Числа и вычисления

Числа и вычисления Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Арифметические операции с рациональными числами, преобразования числовых выражений. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Стандартная форма записи действительного числа. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени. Действия с арифметическими корнями натуральной степени.

Синус, косинус и тангенс числового аргумента. Арксинус, арккосинус, арктангенс числового аргумента.

Уравнения и неравенства

Тождества и тождественные преобразования.

Преобразование тригонометрических выражений. Основные тригонометрические формулы. Уравнение, корень уравнения. Неравенство, решение неравенства. Метод интервалов.

Решение целых и дробно-рациональных уравнений и неравенств.

Решение иррациональных уравнений и неравенств.

Решение тригонометрических уравнений.

Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. График функции. Взаимно обратные функции.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции.

Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Начала математического анализа

Последовательности, способы задания последовательностей. Монотонные последовательности.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера. Множества и логика.

Множество, операции над множествами. Диаграммы Эйлера—Венна. Применение теоретикомножественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

11 КЛАСС

Числа и вычисления

Натуральные и целые числа. Признаки делимости целых чисел. Степень с рациональным показателем. Свойства степени. Логарифм числа. Десятичные и натуральные логарифмы.

Уравнения и неравенства Преобразование выражений, содержащих логарифмы. Преобразование выражений, содержащих степени с рациональным показателем. Примеры тригонометрических неравенств. Показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Системы и совокупности рациональных уравнений и неравенств. Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на промежутке. Тригонометрические функции, их свойства и графики. Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений и линейных систем. Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа

Непрерывные функции. Метод интервалов для решения неравенств. Производная функции. Геометрический и физический смысл производной.

Производные элементарных функций. Формулы нахождения производной суммы, произведения и частного функций.

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости процесса, заданного формулой или графиком.

Первообразная. Таблица первообразных.

Интеграл, его геометрический и физический смысл. Вычисление интеграла по формуле Ньютона–Лейбница.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 10 классе обучающийся получит следующие предметные результаты:

Числа и вычисления:

оперировать понятиями: рациональное и действительное число, обыкновенная и десятичная дробь, проценты;

выполнять арифметические операции с рациональными и действительными числами; выполнять приближённые вычисления, используя правила округления, делать прикидку и оценку результата вычислений;

оперировать понятиями: степень с целым показателем, стандартная форма записи действительного числа, корень натуральной степени, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;

оперировать понятиями: синус, косинус и тангенс произвольного угла, использовать запись произвольного угла через обратные тригонометрические функции.

Уравнения и неравенства:

оперировать понятиями: тождество, уравнение, неравенство, целое, рациональное, иррациональное уравнение, неравенство, тригонометрическое уравнение;

выполнять преобразования целых, рациональных и иррациональных выражений и решать основные типы целых, рациональных и иррациональных уравнений и неравенств;

применять уравнения и неравенства для решения математических задач и задач из различных областей науки и реальной жизни;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики:

оперировать понятиями: функция, способы задания функции, область определения и множество значений функции, график функции, взаимно обратные функции;

оперировать понятиями: чётность и нечётность функции, нули функции, промежутки знакопостоянства;

использовать графики функций для решения уравнений;

строить и читать графики линейной функции, квадратичной функции, степенной функции с целым показателем;

использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами.

Начала математического анализа:

оперировать понятиями: последовательность, арифметическая и геометрическая прогрессии; оперировать понятиями: бесконечно убывающая геометрическая прогрессия, сумма бесконечно убывающей геометрической прогрессии;

задавать последовательности различными способами;

использовать свойства последовательностей и прогрессий для решения реальных задач прикладного характера.

Множества и логика:

оперировать понятиями: множество, операции над множествами;

использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;

оперировать понятиями: определение, теорема, следствие, доказательство.

К концу обучения в 11 классе обучающийся получит следующие предметные результаты: Числа и вычисления:

оперировать понятиями: натуральное, целое число, использовать признаки делимости целых чисел, разложение числа на простые множители для решения задач;

оперировать понятием: степень с рациональным показателем;

оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы.

Уравнения и неравенства:

применять свойства степени для преобразования выражений, оперировать понятиями: показательное уравнение и неравенство, решать основные типы показательных уравнений и неравенств;

выполнять преобразования выражений, содержащих логарифмы, оперировать понятиями: логарифмическое уравнение и неравенство, решать основные типы логарифмических уравнений и неравенств;

находить решения простейших систем и совокупностей рациональных уравнений и неравенств; моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики:

оперировать понятиями: периодическая функция, промежутки монотонности функции, точки экстремума функции, наибольшее и наименьшее значения функции на промежутке, использовать их для исследования функции, заданной графиком;

оперировать понятиями: графики показательной, логарифмической и тригонометрических функций, изображать их на координатной плоскости и использовать для решения уравнений и неравенств;

изображать на координатной плоскости графики линейных уравнений и использовать их для решения системы линейных уравнений;

использовать графики функций для исследования процессов и зависимостей из других учебных дисциплин.

Начала математического анализа:

оперировать понятиями: непрерывная функция, производная функции, использовать геометрический и физический смысл производной для решения задач;

находить производные элементарных функций, вычислять производные суммы, произведения, частного функций;

использовать производную для исследования функции на монотонность и экстремумы, применять результаты исследования к построению графиков;

использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах;

оперировать понятиями: первообразная и интеграл, понимать геометрический и физический смысл интеграла;

находить первообразные элементарных функций, вычислять интеграл по формуле Ньютона-Лейбнипа:

решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

1) Множества рациональных и действительных чисел.		
Рациональные уравнения и неравенства		20
2) Функции и графики. Степень с целым показателем		16
3) Арифметический корень n-ой степени.		18
Иррациональные уравнения и неравенства		
4) Формулы тригонометрии.		23
Тригонометрические уравнения		
5) Последовательности и прогрессии		15
6) Повторение, обобщение, систематизация знаний		10
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		102
11 КЛАСС		
1) Степень с рациональным показателем.		
Показательная функция.		
Показательные уравнения и неравенства	12	
2) Тригонометрические функции и их графики.		
Тригонометрические неравенства.	12	
3) Логарифмическая функция.		
Логарифмические уравнения и неравенства	9	
4) Производная. Применение производной	24	
5) Интеграл и его применения	9	
6) Системы уравнений	12	
7) Натуральные и целые числа	6	
8) Повторение, обобщение, систематизация знаний	15	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	99	

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Важность учебного курса геометрии на уровне среднего общего образования обусловлена практической значимостью метапредметных и предметных результатов обучения геометрии в направлении личностного развития обучающихся, формирования функциональной математической грамотности, изучения других учебных дисциплин. Развитие у обучающихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения обучающихся, а также качеств мышления, необходимых для адаптации в современном обществе.

Геометрия является одним из базовых предметов на уровне среднего общего образования, так как обеспечивает возможность изучения как дисциплин естественно-научной направленности, так и гуманитарной.

Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии и построении цепочки логических утверждений в ходе решения геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности из курса физики.

Умение ориентироваться в пространстве играет существенную роль во всех областях деятельности человека. Ориентация человека во времени и пространстве — необходимое условие его социального бытия, форма отражения окружающего мира, условие успешного познания и активного преобразования действительности. Оперирование пространственными образами объединяет разные виды учебной и трудовой деятельности, является одним из профессионально важных качеств, поэтому актуальна задача формирования у обучающихся пространственного мышления как разновидности образного мышления — существенного компонента в подготовке к практической деятельности по многим направлениям.

Цель освоения программы учебного курса «Геометрия» на базовом уровне обучения – общеобразовательное и общекультурное развитие обучающихся через обеспечение возможности приобретения и использования систематических геометрических знаний и действий, специфичных геометрии, возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием геометрии.

Приоритетными задачами освоения учебного курса «Геометрии» на базовом уровне в 10–11 классах являются:

формирование представления о геометрии как части мировой культуры и осознание её взаимосвязи с окружающим миром;

формирование представления о многогранниках и телах вращения как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира;

формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения; овладение методами решения задач на построения на изображениях пространственных фигур;

формирование умения оперировать основными понятиями о многогранниках и телах вращения и их основными свойствами;

овладение алгоритмами решения основных типов задач, формирование умения проводить несложные доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления;

формирование функциональной грамотности, релевантной геометрии: умение распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке геометрии и создавать геометрические модели, применять освоенный геометрический аппарат для решения практикоориентированных задач, интерпретировать и оценивать полученные результаты.

Отличительной особенностью программы по геометрии является включение в курс стереометрии в начале его изучения задач, решаемых на уровне интуитивного познания, и определённым образом организованная работа над ними, что способствуют развитию логического и пространственного мышления, стимулирует протекание интуитивных процессов, мотивирует к дальнейшему изучению предмета.

Предпочтение отдаётся наглядно-конструктивному методу обучения, то есть теоретические знания имеют в своей основе чувственность предметнопрактической деятельности. Развитие пространственных представлений у обучающихся в курсе стереометрии проводится за счёт решения задач на создание пространственных образов и задач на оперирование пространственными образами. Создание образа проводится с опорой на наглядность, а оперирование образом — в условиях отвлечения от наглядности, мысленного изменения его исходного содержания.

Основными содержательными линиями учебного курса «Геометрия» в 10–11 классах являются: «Многогранники», «Прямые и плоскости в пространстве», «Тела вращения», «Векторы и координаты в пространстве».

Формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения на уровне среднего общего образования.

Содержание образования, соответствующее предметным результатам освоения программы по геометрии, распределённым по годам обучения, структурировано таким образом, чтобы овладение геометрическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, чтобы новые знания включались в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.

Общее число часов, рекомендованных для изучения учебного курса «Геометрия» — 134 часа: в 10 классе — 68 часов (2 часа в неделю), в 11 классе — 66 часов (2 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ 10 КЛАСС

Прямые и плоскости в пространстве

Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них.

Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трёх прямых, параллельность прямой и плоскости. Углы с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, куб, параллелепипед, построение сечений.

Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах.

Многогранники

Понятие многогранника, основные элементы многогранника, выпуклые и невыпуклые многогранники, развёртка многогранника. Призма: n-угольная призма, грани и основания призмы, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Пирамида: n-угольная пирамида, грани и основание пирамиды, боковая и полная поверхность пирамиды, правильная и усечённая пирамида. Элементы призмы и пирамиды. Правильные многогранники: понятие правильного многогранника, правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр. Сечения призмы и пирамиды.

Симметрия в пространстве: симметрия относительно точки, прямой, плоскости. Элементы симметрии в пирамидах, параллелепипедах, правильных многогранниках.

Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усечённой пирамиды. Понятие об объёме. Объём пирамиды, призмы.

Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел

11 КЛАСС

Тела вращения

Цилиндрическая поверхность, образующие цилиндрической поверхности, ось цилиндрической поверхности. Цилиндр: основания и боковая поверхность, образующая и ось, площадь боковой и полной поверхности.

Коническая поверхность, образующие конической поверхности, ось и вершина конической поверхности. Конус: основание и вершина, образующая и ось, площадь боковой и полной поверхности. Усечённый конус: образующие и высота, основания и боковая поверхность.

Сфера и шар: центр, радиус, диаметр, площадь поверхности сферы. Взаимное расположение сферы и плоскости, касательная плоскость к сфере, площадь сферы.

Изображение тел вращения на плоскости. Развёртка цилиндра и конуса.

Комбинации тел вращения и многогранников. Многогранник, описанный около сферы, сфера, вписанная в многогранник, или тело вращения.

Понятие об объёме. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём цилиндра, конуса. Объём шара и площадь сферы.

Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел. Сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара.

Векторы и координаты в пространстве Вектор на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трём некомпланарным векторам. Правило параллелепипеда. Решение задач, связанных с применением правил действий с векторами. Прямоугольная система координат в пространстве. Координаты вектора. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Координатно-векторный метод при решении геометрических задач.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 10 классе обучающийся получит следующие предметные результаты:

оперировать понятиями: точка, прямая, плоскость;

применять аксиомы стереометрии и следствия из них при решении геометрических задач; оперировать понятиями: параллельность и перпендикулярность прямых и плоскостей;

классифицировать взаимное расположение прямых и плоскостей в пространстве;

оперировать понятиями: двугранный угол, грани двугранного угла, ребро двугранного угла, линейный угол двугранного угла, градусная мера двугранного угла;

оперировать понятиями: многогранник, выпуклый и невыпуклый многогранник, элементы многогранника, правильный многогранник;

распознавать основные виды многогранников (пирамида, призма, прямоугольный параллелепипед, куб);

классифицировать многогранники, выбирая основания для классификации (выпуклые и невыпуклые многогранники, правильные многогранники, прямые и наклонные призмы, параллелепипеды);

оперировать понятиями: секущая плоскость, сечение многогранников;

объяснять принципы построения сечений, используя метод следов;

строить сечения многогранников методом следов, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку,

решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление расстояний между двумя точками, от точки до прямой, от точки до плоскости, между скрещивающимися прямыми; \

решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление углов между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями, двугранных углов;

вычислять объёмы и площади поверхностей многогранников (призма, пирамида) с применением формул, вычислять соотношения между площадями поверхностей, объёмами подобных многогранников;

оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры; извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме;

применять простейшие программные средства и электроннокоммуникационные системы при решении стереометрических задач;

приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве; применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин.

К концу обучения в 11 классе обучающийся научится:

оперировать понятиями: цилиндрическая поверхность, образующие цилиндрической поверхности, цилиндр, коническая поверхность, образующие конической поверхности, конус, сферическая поверхность;

распознавать тела вращения (цилиндр, конус, сфера и шар);

объяснять способы получения тел вращения;

классифицировать взаимное расположение сферы и плоскости; оперировать понятиями: шаровой сегмент, основание сегмента, высота сегмента, шаровой слой, основание шарового слоя, высота шарового слоя, шаровой сектор; вычислять объёмы и площади поверхностей тел вращения, геометрических тел с применением формул;

оперировать понятиями: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения;

вычислять соотношения между площадями поверхностей и объёмами подобных тел;

изображать изучаемые фигуры от руки и с применением простых чертёжных инструментов; выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения;

извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

оперировать понятием вектор в пространстве;

выполнять действия сложения векторов, вычитания векторов и умножения вектора на число, объяснять, какими свойствами они обладают; применять правило параллелепипеда;

оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы;

находить сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;

задавать плоскость уравнением в декартовой системе координат;

применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме;

решать простейшие геометрические задачи на применение векторнокоординатного метода;

решать задачи на доказательство математических отношений и нахождение геометрических величин по образцам или алгоритмам, применяя известные методы при решении стандартных математических задач;

применять простейшие программные средства и электроннокоммуникационные системы при решении стереометрических задач;

приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве;

применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

1) Введение в стереометрию

2) Прямые и плоскости в пространстве.	12		
Параллельность прямых и плоскостей			
3) Перпендикулярность прямых и	12		
Плоскостей			
4) Углы между прямыми и плоскостями	10		
5) Многогранники	11		
6) Объемы многогранников	9		
7) Повторение: сечения, расстояние и углы	4		
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРА	MME	68	
11 класс			
1) Тела вращения	20		
2) Объемы тел	20		
3) Векторы и координаты в пространстве	15		
4) Повторение, обобщение и систематизация	11		
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРА	AMME	6	6

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный курс «Вероятность и статистика» базового уровня является продолжением и развитием одноимённого учебного курса базового уровня основного общего образования. Учебный курс предназначен для формирования у обучающихся статистической культуры и понимания роли теории вероятностей как математического инструмента для изучения случайных событий, величин и процессов. При изучении учебного курса обогащаются представления обучающихся о методах исследования изменчивого мира, развивается понимание значимости и общности математических методов познания как неотъемлемой части современного естественнонаучного мировоззрения.

Содержание учебного курса направлено на закрепление знаний, полученных при изучении курса на уровне основного общего образования, и на развитие представлений о случайных величинах и взаимосвязях между ними на важных примерах, сюжеты которых почерпнуты из окружающего мира. В результате у обучающихся должно сформироваться представление о наиболее употребительных и общих математических моделях, используемых для описания антропометрических и демографических величин, погрешностей в различного рода измерениях, длительности безотказной работы технических устройств, характеристик массовых явлений и процессов в обществе.

В соответствии с указанными целями в структуре учебного курса «Вероятность и статистика» для уровня среднего общего образования на базовом уровне выделены следующие основные содержательные линии: «Случайные события и вероятности», «Случайные величины и закон больших чисел».

Важную часть учебного курса занимает изучение геометрического и биномиального распределений и знакомство с их непрерывными аналогами – показательным и нормальным распределениями.

Содержание линии «Случайные события и вероятности» служит основой для формирования представлений о распределении вероятностей между значениями случайных величин, а также эта линия необходима как база для изучения закона больших чисел — фундаментального закона, действующего в природе и обществе и имеющего математическую формализацию. Сам закон больших чисел предлагается в ознакомительной форме с минимальным использованием математического формализма.

Темы, связанные с непрерывными случайными величинами, акцентируют внимание обучающихся на описании и изучении случайных явлений с помощью непрерывных функций. Основное внимание уделяется показательному инормальному распределениям, при этом предполагается ознакомительное изучение материала без доказательств применяемых фактов.

Общее число часов, рекомендованных для изучения учебного курса «Вероятность и статистика» – 67 часов: в 10 классе – 34 часа (1 час в неделю), в 11 классе – 33 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Представление данных с помощью таблиц и диаграмм. Среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия и стандартное отклонение числовых наборов. Случайные эксперименты (опыты) и случайные события. Элементарные события (исходы). Вероятность случайного события. Близость частоты и вероятности событий.

Случайные опыты с равновозможными элементарными событиями. Вероятности событий в опытах с равновозможными элементарными событиями.

Операции над событиями: пересечение, объединение, противоположные события. Диаграммы Эйлера. Формула сложения вероятностей.

Условная вероятность. Умножение вероятностей. Дерево случайного эксперимента. Формула полной вероятности. Независимые события.

Комбинаторное правило умножения. Перестановки и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома Ньютона.

Бинарный случайный опыт (испытание), успех и неудача. Независимые испытания. Серия независимых испытаний до первого успеха. Серия независимых испытаний Бернулли.

Случайная величина. Распределение вероятностей. Диаграмма распределения. Примеры распределений, в том числе, геометрическое и биномиальное.

11 КЛАСС

Числовые характеристики случайных величин: математическое ожидание, дисперсия и стандартное отклонение. Примеры применения математического ожидания, в том числе в задачах из повседневной жизни. Математическое ожидание бинарной случайной величины. Математическое ожидание суммы случайных величин. Математическое ожидание и дисперсия геометрического и биномиального распределений.

Закон больших чисел и его роль в науке, природе и обществе. Выборочный метод исследований.

Примеры непрерывных случайных величин. Понятие о плотности распределения. Задачи, приводящие к нормальному распределению. Понятие о нормальном распределении.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 10 классе обучающийся получит следующие предметные результаты:

читать и строить таблицы и диаграммы;

оперировать понятиями: среднее арифметическое, медиана, наибольшее, наименьшее значение, размах массива числовых данных;

оперировать понятиями: случайный эксперимент (опыт) и случайное событие, элементарное событие (элементарный исход) случайного опыта, находить вероятности в опытах с равновозможными случайными событиями, находить и сравнивать вероятности событий в изученных случайных экспериментах;

находить и формулировать события: пересечение и объединение данных событий, событие, противоположное данному событию, пользоваться диаграммами Эйлера и формулой сложения вероятностей при решении задач;

оперировать понятиями: условная вероятность, независимые события, находить вероятности с помощью правила умножения, с помощью дерева случайного опыта;

применять комбинаторное правило умножения при решении задач;

оперировать понятиями: испытание, независимые испытания, серия испытаний, успех и неудача, находить вероятности событий в серии независимых испытаний до первого успеха, находить вероятности событий в серии испытаний Бернулли;

оперировать понятиями: случайная величина, распределение вероятностей, диаграмма распределения.

К концу обучения в 11 классе обучающийся получит следующие предметные результаты:

сравнивать вероятности значений случайной величины по распределению или с помощью диаграмм;

оперировать понятием математического ожидания, приводить примеры, как применяется математическое ожидание случайной величины находить математическое ожидание по данному распределению;

иметь представление о законе больших чисел; иметь представление о нормальном распределении.

Тематическое планирование 10 класс

1) Представление данных и описательная статистика	4
2) Случайные опыты и случайные события, опыты	
с равновозможными элементарными исходами	3
3) Операции над событиями, сложение вероятностей	3
4) Условная вероятность, дерево случайного опыта,	
формула полной вероятности и независимость событий	6
5) Элементы комбинаторики	4
6) Серии последовательных испытаний	3
7) Случайные величины и распределения	6
8) Повторение, обобщение, систематизация знаний	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34
11 класс	
1) Математическое ожидание случайной величины	5
2) Дисперсия и стандартное отклонение случайной величины	6
3) Закон больших чисел	5
4) Непрерывные случайные величины (распределения)	5
5) Нормальное распределение	5
6) Повторение, обобщение и систематизация знаний	7
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	33